
Explaining Answer-Set Programs with Abstract
Constraint Atoms (Extended Abstract)

Thomas Eiter and Tobias Geibinger

Knowledge-based Systems Group, Institute of Logic and Computation, TU Wien,
Favoritenstraße 9-11, 1040 Vienna, Austria

{thomas.eiter, tobias.geibinger}@tuwien.ac.at

Abstract. Answer-Set Programming (ASP) is a popular declarative
reasoning and problem solving formalism. Due to the increasing interest
in explainability, several explanation approaches have been developed for
ASP. However, support for commonly used advanced language features
of ASP, as for example aggregates or choice rules, is still mostly lacking.
We deal with explaining ASP programs containing Abstract Constraint
Atoms, which encompass the above features and others. We provide justi-
fications for the presence, or absence, of an atom in a given answer-set. To
this end, we introduce several formal notions of justification in this set-
ting based on the one hand on a semantic characterisation utilising min-
imal partial models, and on the other hand on a more ruled-guided ap-
proach. We provide complexity results for checking and computing such
justifications, and discuss how the semantic and syntactic approaches
relate and can be jointly used to offer more insight. Our results con-
tribute to a basis for explaining commonly used language features and
thus increase accessibility and usability of ASP as an AI tool.

1 Motivation

The growing pervasiveness of artificial intelligence (AI) in everyday life has led
to concerns about the transparency of AI systems, and regulations against using
“black-box” systems for sensitive tasks are under development.

Answer-Set Programming (ASP) is a symbolic, rule-based reasoning formal-
ism that has been employed for various AI applications in numerous domains [6,
9], among them life sciences [7], health insurance [2], or psychology [12].

ASP allows for a declarative encoding of problems in a succinct manner. So-
lutions for them are obtained from answer-sets, which result from the evaluation
of the encoding using an ASP solver. While ASP is a declarative AI approach,
there is still need for providing concise and interpretable explanations as to why
certain facts are, or are not, in a computed answer-set. For this reason, a number
of explanation approaches for ASP have been developed; we refer to [10] for a
comprehensive survey. However, most of the approaches in the literature do not
support language extensions like aggregates [8] or choice rules [11]. As both fea-
tures are frequently used in practice, the applicability of explanation approaches
is limited and ASP can not live up to its full potential of a transparent AI tool.

2 Thomas Eiter and Tobias Geibinger

This extended abstract encompasses work from a recent conference publi-
cation [5] tackling this shortcoming by introducing several formal notions of
justification based on programs with Abstract Constraint Atoms (c-atoms) [13].

2 Background

We consider propositional Answer-Set Programming (ASP), assuming a denum-
berable set A of propositional atoms.

In particular, we consider programs consisting of Abstract Constraint Atoms
(c-atoms) [13], which are defined as follows. A c-atom is a tuple A = ⟨D,C⟩,
where D ⊆ A is the domain and C ⊆ 2D are the satisfiers of the c-atom.

The notion of c-atoms effectively generalises propositional atoms: any propo-
sitional atom a can be expressed by the c-atom ⟨{a}, {{a}}⟩. We call the latter
elementary and whenever convenient, we will identify it with a.

We define the complement of a c-atom A = ⟨D,C⟩ as A = ⟨D,C⟩ where
C = 2D \ C are the non-satisfiers of A. Clearly, A = A holds.

Following [14], we define (disjunctive) logic programs over c-atoms, which
consist of a finite number of rules of the form

A1 ∨ · · · ∨Al ← Al+1, . . . , Am,not Am+1, . . . ,not An,

where A1, . . . , An are c-atoms, l ≥ 1 and m,n ≥ 2.
For a rule r of the form above, H(r) := {A0, . . . , Al} is the head of the rule,

whereas B(r) := {Al+1, . . . , Am,not Am+1, . . . ,not An} is the body. The set of
all propositional atoms appearing in program P is denoted by AP .

The semantics of logic programs is based on interpretations. Here, we also
introduce them as potentially partial. A partial interpretation is a tuple I =
⟨I+, I−⟩, where I+, I− ⊆ A and I+ ∩ I− = ∅. A partial interpretation I =
⟨I+, I−⟩ is total on set S if I+ ∪ I− ⊇ S. When it is clear from context, we drop
the set S and by default, we assume interpretations are total and identify them
by the single set I+. Furthermore, we say that I is finite if I+ is.

A c-atom A = ⟨D,C⟩ is satisfied by a partial interpretation I = ⟨I+, I−⟩,
denoted I |= A, if S ∈ C, where S = I+ ∩D and for each U ∈ C s.t. S ⊂ U , it
holds that U ∩ I− ̸= ∅.

The partial interpretation I satisfies not A (I |= not A) if for each S ∈ C,
either (a) S ∩ I− ̸= ∅ or (b) (U \ S) ∩ I+ ̸= ∅ for U =

⋃
{X ∈ C | S ⊆ X}.

Intuitively, a c-atom is satisfied by an interpretation I if one of its satisfiers,
which cannot be extended to an unsatisfier, is known to be true. The intuition
behind satisfaction of a negative c-literal is more involved. However, we also give
the following result.

Proposition 1. Given a c-atom A, then for every partial interpretation I we
have I |= not A iff I |= A.

Satisfaction is generalised to sets of c-literals and rules as usual and answer-
sets are defined as follows. Let P be a program and I be a total interpretation.

Explaining Answer-Set Programs with Abstract Constraint Atoms 3

Then
P I := {HR(H(r), I)← B(r) | r ∈ P, I |= B(r)},

where HR(M, I) := {⟨DA, {I ∩ DA}⟩ | A ∈ M, I |= A} if I |= H(r) and
HR(M, I) := ⊥ otherwise, is the extended FLP reduct of P with respect to
I. A finite total interpretation I is then an answer-set of P if I |= P I and there
is no total interpretation I ′ ⊂ I such that I ′ |= P I . The set of all answer-sets of
P is denoted by AS (P).

3 Contributions

The first contribution of the paper is a notion which we call model-based jus-
tification or m-justification for short. First, we define the following order over
partial interpretations.

Definition 1. Let J1 and J2 be partial interpretations. Then J1 ≤ J2 if J+
1 ⊆

J+
2 and J−

1 ⊆ J−
2 . Furthermore, J1 < J2 if J1 ≤ J2 and J1 ̸= J2.

An m-justification is then defined as follows.

Definition 2. Let L be a c-literal and I be a total model of L. Then, a partial
interpretation J is called a (positive) m-justification of I |= L if (i) J ≤ I, (ii)
J |= L and (iii) there is no J ′ < J such that J ′ |= L.

The intuition here is that an m-justification should highlight the parts of the
model that are responsible for the satisfaction of the c-literal. The definition can
be readily extended to non-satisfaction.

Definition 3. Let L be a c-literal and I be a total countermodel of L. Then J
is a (negative) m-justification of I ̸|= L if J is an m-justification of I |= L.

Let us look at an example.

Example 1. Consider the c-atom A1 = ⟨D1, C1⟩ where D1 = {a, b, c} and C1 =
{{a}, {b, c}, {a, b}, {a, c}, {a, b, c}}, which represents the aggregate #sum{2 : a,
1 : b, 1 : c} > 1. Suppose we have I1 = {a, b, c} and S1 = I∩D1. Clearly, S1 ∈ C1

and thus I1 |= A1. Furthermore, ⟨{a}, ∅⟩ and ⟨{b, c}, ∅⟩ are valid m-justifications.
The former can be read as follows: the c-atom A1 is satisfied by I because a
is true. Consider I2 = {b}. Since I2 ̸|= A1, we may look for m-justifications
of A = ⟨D1, {∅, {b}, {c}}⟩. The partial interpretation ⟨∅, {a, c}⟩ is the only m-
justification. The intuition here is that I2 ̸|= A1 holds because neither a nor c
are satisfied by I2, which, since b cannot be false in I2, would be a requirement
for A to be satisfied.

The above notions can naturally be extended towards sets of c-literals. The
reader is referred to the paper [5] for details.

An issue with m-justification is that they do not take the rules of the pro-
gram into account. This motivates our second contribution. Namely, rule-based
justifications (r-justifications). First, we give some auxiliary definitions.

4 Thomas Eiter and Tobias Geibinger

Definition 4 (Presumptuous Entailment). Let P be a program, J be a par-
tial interpretation and A be a c-atom. Then we define P |=J A if for every total
model I of P s.t. I ≥ J , it holds that I |= A.

Definition 5 (Failed Support). Let r be a rule and I be a total model of r.
Then, r is a failed support for atom a w.r.t. I if I ̸|= B(r) and for every I ′,
I ′ |= a if I ′ |= r and I ′ |= B(r).

Now we can define r-justifications.

Definition 6. Let P be a program, I ∈ AS (P) be an answer-set and a be an
atom. Then, a triple (a◦, Q, J), where ◦ ∈ {+,−}, Q ⊆ P is a set of rules, and
J ≤ I is a partial interpretation, is an r-justification for a w.r.t. P and I if the
following conditions hold:

(a) If a ∈ I, then ◦ = +, QI |=J a and there is no R ⊂ Q such that RI |=J a.
(b) If a ̸∈ I, then ◦ = −, Q = {r ∈ P | r is a failed support of a w.r.t. I}, and

for every r ∈ Q, J |= A for some A ∈ B(r).

We say that the r-justification is concise if J is ≤-minimal.

An r-justification is essentially composed of three things: (1) an annotated atom
indicating what is justified, (2) the set of rules needed to do so, and (3) a partial
interpretation explaining why the rules do, or respectively do not, yield the
atom. Furthermore, both conditions (a) and (b) ensure that the set of rules Q
is minimal and thus contains no redundant rules.

Example 2. Consider the program P1 = {r1 : d← ⟨{a, b, c}, {∅, {a}, {b}, {a, b}}⟩,
r2 : a← not c, r3 : c← not a } and one of its answer-sets {a, d}. Intuitively, the
body of rule r1 is true whenever c is false and the other encode a choice between
a and c. The concise r-justifications for a, b, c and d are then (a+, {r2}, ⟨∅, {c}⟩),
(b−, ∅, ⟨∅, ∅⟩), (c−, {r3}, ⟨{a}, ∅⟩) and (d+, {r1}, ⟨∅, {c}⟩).

In the paper, we additionally discuss chains of r-justifications, which ex-
haustively try to justify atoms, an their elaboration, i.e., minimising the rules
contained in an element of the chain. We will not provide the formal definitions
here, but give the following example.

Example 3. For the program P5 = {r10 : a ← b, r11 : b ← not c, r12 : ⊥ ←
c}, the set {a, b} is the unique answer-set and J = (a+, {r10, r11}, ⟨∅, {c}⟩),
(c−, ∅, ⟨∅, ∅⟩) is an r-justification chain for a. Furthermore, J can be elabo-
rated through the first element yielding (a+, {r10}, ⟨{b}, ∅⟩), (b+, {r11}, ⟨∅, {c}⟩),
(c−, ∅, ⟨∅, ∅⟩) as a (concise) chain.

We also studied the computational complexity of recognising and computing
model-based and rule based justifications. The complexity ranges for the recog-
nition problems from NP/coNP to Σp

2 , while computing justifications is feasible
in polynomial time with an NP oracle. For the detailed results, we again refer to
the paper.

Explaining Answer-Set Programs with Abstract Constraint Atoms 5

4 Conclusion & Future Work

We introduced and studied complementary notions of justification for ASP pro-
grams built over Abstract Constraint atoms, which encompass various ASP lan-
guage extensions, among them aggregates and choice rules. Our m-justifications
use a semantic approach based on minimal partial models, while r-justification
chains are a more syntactically minded, rule-based notion. We have provided
several examples and showed how the notions can be jointly used. Besides some
basic properties of justifications, we provided complexity results for emerging
computational tasks. While they are often intractable in general, we identified
relevant tractable cases.

Related work includes the explanation systems xclingo [3, 4] and xASP2 [1],
which both have recently begun to support programs with aggregates. However,
both approaches currently do not give minimal justifications for aggregates and
thus incorporating our notion of m-justification in those systems might be an
interesting topic.

Our ongoing and future work aims to extend this theoretical study of justi-
fication, and to utilise it in a fully-fledged and interactive explanatory system.
Specifically, a user may opt in a session for the model- or the rule-based approach
at the current stage to obtain more insight, control which rules get expanded, and
drive possible elaboration of justifications. Investigating how our justifications
can be used or extended to offer contrastive justifications, which inform about
changes to flip the membership of atoms in an answer-set, is another worthwhile
endeavour.

References

1. Alviano, M., Trieu, L.L.T., Son, T.C., Balduccini, M.: Explanations for
answer set programming. In: Technical Communications of the 39th
International Conference on Logic Programming (ICLP 2023) (2023).
https://doi.org/https://dx.doi.org/10.4204/EPTCS.385.4

2. Beierle, C., Dusso, O., Kern-Isberner, G.: Using answer set programming for
a decision support system. In: Proceedings of the 8th International Con-
ference (LPNMR 2005). LNCS, vol. 3662, pp. 374–378. Springer (2005).
https://doi.org/10.1007/11546207_30

3. Cabalar, P., Fandinno, J., Muñiz, B.: A system for explainable answer set pro-
gramming. In: Technical Communications of the 36th International Conference
on Logic Programming (ICLP 2020). EPTCS, vol. 325, pp. 124–136 (2020).
https://doi.org/10.4204/EPTCS.325.19

4. Cabalar, P., Muñiz, B.: Explanation graphs for stable models of labelled logic
programs. In: Proceedings of the International Conference on Logic Programming
2023 Workshops co-located with the 39th International Conference on Logic Pro-
gramming (ICLP 2023). CEUR Workshop Proceedings, vol. 3437. CEUR-WS.org
(2023), https://ceur-ws.org/Vol-3437/paper3ASPOCP.pdf

5. Eiter, T., Geibinger, T.: Explaining answer-set programs with abstract con-
straint atoms. In: Proceedings of the 32nd International Joint Confer-
ence on Artificial Intelligence (IJCAI 2023). pp. 3193–3202. ijcai.org (2023).
https://doi.org/10.24963/ijcai.2023/356

6 Thomas Eiter and Tobias Geibinger

6. Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming. AI
Magazine 37(3), 53–68 (2016). https://doi.org/10.1609/aimag.v37i3.2678

7. Erdem, E., Oztok, U.: Generating explanations for biomedical queries.
Theory and Practice of Logic Programming 15(1), 35–78 (2015).
https://doi.org/10.1017/S1471068413000598

8. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic pro-
grams: Semantics and complexity. In: Proceedings of the 9th European Conference
on Logics in Artificial Intelligence (JELIA 2004). LNCS, vol. 3229, pp. 200–212.
Springer (2004). https://doi.org/10.1007/978-3-540-30227-8_19

9. Falkner, A., Friedrich, G., Schekotihin, K., Taupe, R., Teppan, E.C.: Industrial
applications of answer set programming. KI - Künstliche Intelligenz 32(2), 165–
176 (2018). https://doi.org/10.1007/s13218-018-0548-6

10. Fandinno, J., Schulz, C.: Answering the "why" in answer set programming - A
survey of explanation approaches. Theory and Practice of Logic Programming
19(2), 114–203 (2019). https://doi.org/10.1017/S1471068418000534

11. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan
& Claypool Publishers (2012)

12. Inclezan, D.: An application of answer set programming to the field of second lan-
guage acquisition. Theory and Practice of Logic Programming 15(1), 1–17 (2015).
https://doi.org/10.1017/S1471068413000653

13. Marek, V.W., Truszczynski, M.: Logic programs with abstract constraint atoms.
In: Proceedings of the 19th National Conference on Artificial Intelligence (AAAI
2004). pp. 86–91. AAAI Press / The MIT Press (2004)

14. Oetsch, J., Pührer, J., Tompits, H.: Stepwise debugging of answer-set pro-
grams. Theory and Practice of Logic Programming 18(1), 30–80 (2018).
https://doi.org/10.1017/S1471068417000217

