
Explanations for Non-Validation in SHACL using

Answer Set Programming

Shqiponja Ahmetaj
shqiponja.ahmetaj@tuwien.ac.at

September 13, 2023

Abstract

This abstract summarizes our recent works [1, 2] on explaining the
non-validation of SHACL constraints. In our framework, non-validation
is explained using the notion of a repair, which is a collection of additions
and deletions of facts that will cause the data to be consistent with the
given constraints. We define a collection of decision problems for rea-
soning about explanations and analyze their computational complexity.
We propose an algorithm to compute repairs by encoding the explanation
problem – using Answer Set Programming (ASP) – into a logic program,
the answer sets of which correspond to (minimal) repairs.

1 Introduction

The Shape Constraint Language (SHACL) is a recently standardized language
for expressing constraints on RDF graphs. It is the result of industrial and aca-
demic efforts to provide solutions for checking the quality of RDF graphs and
for declaratively describing (parts of) their structure. We recommend [10] for
an introduction to SHACL and its close relative ShEx. The SHACL standard
provides a syntax for writing down constraints, as well as describes the way RDF
graphs should be validated w.r.t. to a given set of SHACL constraints. However,
some aspects of validation were not completely specified in the standard, like
the semantics of validation for constraints with cyclic dependencies. To ad-
dress these shortcomings, several formalizations of SHACL based in logic-based
languages with clear semantics have recently emerged [8, 3, 11].

In SHACL, the basic computational problem is to check whether a given
RDF graph G validates a SHACL document (C, T), where C is a specification
of validation rules (constraints) and T is a specification of nodes to which the
validation rules should apply (targets). In order to make SHACL truly useful
and widely accepted, we need automated tools that implement not only valida-
tion, which results in “yes” or “no” answers, but also support the users in their
efforts to understand the reasons why a given graph validates or not against a

1

given document. The SHACL specification stresses the importance of explain-
ing validation outcomes and introduces the notion of validation reports for this
purpose. If a graph validates a document, the standard provides clear instruc-
tions regarding the appearance of validation reports. However, the principles
of validation reports in case of non-validation are left largely open in the stan-
dard. It is not hard to see that, in general, there may be a very large number of
possible reasons for a specific validation target to fail, and it is far from obvious
what should be presented to the user in validation reports.

We advocate explanations in the style of database repairs [4] as one concrete
way to provide explanations for the non-validation of SHACL constraints. This
approach is closely related to abductive reasoning, model-based diagnosis, and
counterfactuals, which have received significant attention in the last decades
and have been applied to a range of similar problems requiring explanatory
services (see, e.g., [9, 12, 6, 7]).

◦ To explain non-validation of a SHACL document (C, T) by an RDF graph
G, we introduce the notion of a SHACL Explanation Problem (SEP). A solu-
tion to a SEP is a pair (A,D), where A and D are sets of facts to be added
and removed from G, respectively, so that the resulting graph does validate the
document (C, T). We consider natural preference orders over explanations, and
study also explanations that are minimal w.r.t. set inclusion and cardinality. We
define a collection of inference services, which are reminiscent of basic reason-
ing problems in logic-based abduction [9], and study both combined and data
complexity of these tasks. We then turn our attention to non-recursive SHACL
constraints and show that, in general, reasoning does not become easier.

◦ We propose to compute repairs of a data graph by encoding the problem
into ASP. We show how to transform a given data graph G and a SHACL
shapes graph (C, T) into an ASP program P such that the answer sets (or, stable
models) of P can be seen as a collection of plausible repairs of G w.r.t. the shapes
graph (C, T). Since efficient ASP solvers exist (we use Clingo), this provides a
promising way to generate data repairs in practice. The repair generation task
is challenging because a given data graph might be repaired in many different
ways. In fact, since fresh nodes could be introduced during the repair process,
an infinite number of repairs is possible.

◦ When designing a repair generator, we need to make some choices. We
have studied the scenarios, where the repair generator always introduces fresh
values for cardinality constraints, and the scenario where reusing existing nodes
is also allowed. We argue that forcing the generator to always introduce fresh
nodes can sometimes leave out expected (minimal) repairs and even not produce
any repairs at all. Indeed, there are cases when reusing existing nodes may be
desired and even necessary. We have implemented and tested these encodings
using the Clingo ASP system, which showed that our approach is promising for
providing quality control and improvements for RDF graphs for practical use.

2

2 SHACL Validation

Let N, C, and P denote countably infinite, mutually disjoint sets of nodes,
class names, and property names, respectively. A data graph G (RDF graph)
is a finite set of atoms of the form B(c) and p(c, d), where B ∈ C, p ∈ P, and
c, d ∈ N. The set of nodes appearing in G is denoted with V (G). We assume a
countably infinite set S of shape names, disjoint from N∪C∪P. A shape atom
is an expression of the form s(a), where s ∈ S and a ∈ N. A path expression
E is a regular expression built using the usual operators ∗, ·, ∪ from symbols
in P+ = P ∪ {p− | p ∈ P}. If p ∈ P, then p− is the inverse property of p. A
(complex) shape is an expression ϕ obeying the syntax:

ϕ, ϕ′ ::= ⊤ | s | B | c | ϕ ∧ ϕ′ | ¬ϕ |≥n E.ϕ | E = E′,

where s ∈ S, A ∈ C, c ∈ N, n is a positive integer, and E, E′ are path
expressions. A (shape) constraint is an expression s ↔ ϕ where s ∈ S and
ϕ is a possibly complex shape. In SHACL, targets are used to prescribe that
certain nodes of the input data graph should validate certain shapes. W.l.o.g. we
view targets as shape atoms of the form s(a), where s ∈ S and a ∈ N. Ashape
document is a pair (C, T), where (i) C is a set of constraints and (ii) T is a set of
targets. The evaluation of a shape expression ϕ is given by assigning nodes of the
data graph to (possibly multiple) shape names. A (shape) assignment for a data
graph G is a set I = G∪L, where L is a set of shape atoms such that a ∈ V (G)
for each s(a) ∈ I. The evaluation of a (complex) shape w.r.t. an assignment I
is given in terms of a function that maps a (complex) shape expression ϕ to a
sets of nodes, and a path expression E to a set of pairs of nodes. We refer to
[?] for details on the evaluation of the various operators in complex shapes. For
validation we consider the semantics proposed in [8]. An assignment I for G and
a document (C, T) is a (supported) model of C if JϕKI = sI for all s ↔ ϕ ∈ C.
The data graph G validates (C, T) if there exists an assignment I = G ∪ L for
G such that (i) I is a model of C, and (ii) T ⊆ L.

3 Explaining Non-Validation in SHACL

In this section, we formalize the notion of explanations for non-validation of a
SHACL document by a data graph, illustrate it with an example, and present
some complexity results. Let G be a data graph, let (C, T) be a SHACL docu-
ment, and let the set of hypotheses H be a data graph disjoint from G. Then
Ψ= (G,C, T,H) is a SHACL Explanation Problem (SEP). An explanation for
Ψ is a pair (A,D), such that (a) D ⊆ G, A ⊆ H, and (b) (G \ D) ∪ A vali-
dates (C, T).

Example 1. Consider a SEP Ψ = (G,C, T,H), where:

C ={Teacher ↔ ∃teaches.⊤,

Student ↔ ∃enrolledIn.Course ∧ ¬Teacher}

3

∅ ⊆ ≤

IsExpl NP-c DP-c DP-c

Exist NP-c NP-c NP-c

NecAdd coNP-c coNP-c PNP
∥ -c

NecDel coNP-c coNP-c PNP
∥ -c

RelAdd NP-c ΣP
2 -c PNP

∥ -c

RelDel NP-c ΣP
2 -c PNP

∥ -c

Table 1: Complexity results for recursive SHACL constraints

T = {Student(Ben),Teacher(Ann)}, H = {Course(C1),Course(C2)}, and G =
{enrolledIn(Ben,C1), teaches(Ann,Ben), teaches(Ben,Ben), teaches(Ann,Li)}
The constraints state that each Teacher must teach someone, and each Student
must be enrolled in some course and must not comply with the shape Teacher.
Note that Teacher and Student are shape names, enrolledIn is a property name,
and Course is a class name. The data graph G validates (C, {Teacher(Ann)}),
but does not validate (C, T). A possible explanation for non-validation is that G
is missing the fact that C1 is a Course; it also contains the possibly erroneous
fact that teaches(Ben,Ben). Thus, validation is ensured by repairing G with the
explanation (A,D), where A = {Course(C1)} and D = {teaches(Ben,Ben)}.

We consider preference relations over explanations, given by a reflexive and
transitive relation ⪯ on the set of explanations and study two typical preference
orders: subset-minimal (⊆), and cardinality-minimal (≤) explanations. We now
define the main decision problems for SEPs. Let Ψ = (G,C, T,H) be a SEP,
let A,D be data graphs, let α be an atom in G ∪H, and let ⪯ be a preorder.
We define six decision problems: 1) ⪯-IsExpl checks whether (A,D) is a ⪯-
explanation for Ψ, 2) ⪯-Exist checks whether there exists a ⪯-explanation
for Ψ 3) ⪯-NecAdd and 4) ⪯-NecDel check whether α occurs in A or D,
respectively, in every ⪯-explanation (A,D) for Ψ, 5) ⪯-RelAdd and 6) ⪯-
RelDel check whether α occurs in A or D, respectively, in some ⪯-explanation
(A,D) for Ψ.

We present in Table 1 only the results for recursive SHACL and refer to [1] for
the non-recursive fragment and for SEPs with restricted explanation signature.
We omit ⪯ from the name of decision problems when ⪯ is empty, and write (⪯)
when considering the variants with and without ⪯. We use ⪯ as a placeholder
for both ⊆ and ≤.

4

4 Encoding into ASP

To compute minimal explanations, we adapt in [2] an approach from databases
and logic programming (see [5] for details) that computes minimal repairs for
Datalog programs with negation. We provide here a high-level description of
the encoding and refer to [2] for more details.

For a repair problem Ψ, where C is a set of non-recursive SHACL constraints
in normal form, we construct a program PΨ, such that the stable models of
(G,PΨ) will provide repairs for Ψ. In a nutshell, for every constraint specified
by a shape in the shapes graph, the repair program PΨ consists of four kinds of
rules: PAnnotation consists of rules that collect existing atoms or atoms that are
proposed to be in the repaired data graph, PRepair consists of rules that repair the
constraints by proposing additions and deletions of atoms, PInterpretation consists
of rules that collect all the atoms that will be in the repaired data graph, and
PConstraints consists of rules that filter out models that do not provide repairs.
Intuitively, the repair program implements a top-down target-oriented approach
and starts by first making true all the shape atoms in the target. From this on,
the rules for constraints specified by the shapes capture violations on the targets
in the rule body and propose repairs in the rule head using the annotations
described above. The rules will add annotated atoms which represent additions
and deletions that can be applied to the data graph to fix the violations.

We first present the basic encoding of the repair task, where the program
tries to find a repair that satisfies all targets of the input shapes graph. This
encoding employs a particular strategy for introducing new nodes in the data
graph: when a value for a property needs to be added, a fresh value is always
introduced. We argue that it is a reasonable strategy; it is also closely related
to the standard notion of Skolemization. By using some of the features of ASP,
we ensure that our repair program generates repairs that are minimal in terms
of cardinality, which means that they contain only minimal modifications for
resolving constraint violations. Our basic encoding is later extended to allow
for the introduction of fresh nodes as well as the reuse of existing or previously
introduced nodes.

We observe that requiring a repair to resolve violations for all specified tar-
gets may be too strong. In the context of the basic encoding, if the data graph
has one inherently unfixable target (e.g., because of some erroneous constraint),
then the repair program will have no answer sets and it will provide no guidance
on how to proceed with fixing the data graph. To address this issue, we intro-
duce the notion of maximal repairs, which repair the highest number of targets
that is possible to repair. We show how our encoding can be augmented to gen-
erate repairs according to this new notion. This is done using the optimization
features of Clingo as well as rules that allow to skip some targets.

5

References

[1] Shqiponja Ahmetaj, Robert David, Magdalena Ortiz, Axel Polleres, Bo-
jken Shehu, and Mantas Simkus. Reasoning about explanations for non-
validation in SHACL. In Proceedings of KR 2021, pages 12–21, 2021.

[2] Shqiponja Ahmetaj, Robert David, Axel Polleres, and Mantas Simkus. Re-
pairing SHACL constraint violations using answer set programming. In The
Semantic Web - ISWC 2022, volume 13489 of Lecture Notes in Computer
Science, pages 375–391. Springer, 2022.

[3] Medina Andresel, Julien Corman, Magdalena Ortiz, Juan L. Reutter, Ogn-
jen Savkovic, and Mantas Šimkus. Stable model semantics for recursive
SHACL. In Proc. of The Web Conference 2020, WWW ’20, page 1570–1580.
ACM, 2020.

[4] Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Consistent query
answers in inconsistent databases. In Proc. of PODS, pages 68–79. ACM
Press, 1999.

[5] Leopoldo E. Bertossi. Database Repairing and Consistent Query Answer-
ing. Synthesis Lectures on Data Management. Morgan & Claypool Pub-
lishers, 2011.

[6] Diego Calvanese, Magdalena Ortiz, Mantas Simkus, and Giorgio Stefanoni.
Reasoning about explanations for negative query answers in DL-Lite. J.
Artif. Intell. Res., 48:635–669, 2013.

[7] İsmail İlkan Ceylan, Thomas Lukasiewicz, Enrico Malizia, Cristian Moli-
naro, and Andrius Vaicenavicius. Explanations for negative query answers
under existential rules. In Proc. of KR 2020, pages 223–232, 2020.

[8] Julien Corman, Juan L. Reutter, and Ognjen Savkovic. Semantics and
validation of recursive SHACL. In Proc. of ISWC’18. Springer, 2018.

[9] Thomas Eiter and Georg Gottlob. The complexity of logic-based abduction.
J. ACM, 42(1):3–42, 1995.

[10] José Emilio Labra Gayo, Eric Prud’hommeaux, Iovka Boneva, and Dimitris
Kontokostas. Validating RDF Data. Synthesis Lectures on the Semantic
Web: Theory and Technology. Morgan & Claypool Publishers, 2017.

[11] Martin Leinberger, Philipp Seifer, Tjitze Rienstra, Ralf Lämmel, and Stef-
fen Staab. Deciding SHACL shape containment through description logics
reasoning. In Proc. of ISWC 2020, volume 12506 of Lecture Notes in Com-
puter Science, pages 366–383. Springer, 2020.

[12] Frank Van Harmelen, Vladimir Lifschitz, and Bruce Porter. Handbook of
knowledge representation. Elsevier, 2008.

6

