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1 Introduction

Activation-based conditional inference (ActInf) [12] combines conditional reason-
ing and ACT-R (Adaptive Control of Thought-Rational) [3, 2], an architecture
from cognitive science used to formalize human reasoning, and therewith con-
stitutes a powerful and cognitively well-founded inference framework. Basically,
there are two cognitive processes in human reasoning which affect the selection
of beliefs (called chunks in ACT-R): The long-term process of forgetting and
remembering and the short-term process of activating specific beliefs depend-
ing on the context. ACT-R formalizes these processes in form of an activation
function which models the retrieval of beliefs. Based on this selection of beliefs,
the inference in typical ACT-R implementations is realized by a production sys-
tem [5, 7]. ActInf reinterprets the basic elements of ACT-R in a more abstract
form, detaching them from its inference engine using production rules. In this
way, ActInf makes ACT-R more broadly usable for knowledge representation.
By combining the abstract ACT-R elements with state-of-the-art conditional
reasoning operators, activation-based conditional inference presents as a novel
approach to reasoning that explicitly takes cognitive aspects into account.

2 Retrieval of Beliefs in ACT-R

In ACT-R [3, 2] a distinction is made between the declarative memory in which
categorical knowledge about individuals or objects is stored in form of chunks
(knowing that) and the procedural memory which typically consists of production
rules and describes how the chunks are processed (knowing how) [10]. Reasoning
in ACT-R starts with an initial priming which causes an activation of chunks.
The chunk with the highest activation is selected and processed by production
rules in order to compute a solution of the reasoning task. If this fails, the
activation passes into an iterative process: The system obtains additional chunks
from the declarative memory and tries to compute a solution again until either
the problem is solved or no further chunks are active.
⋆ This introduction to activation-based conditional inference is based on [12].
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The retrieval of chunks (ci) is formalized by an activation function A(ci)
which is calculated for each specific request anew and which is based on a usage
history of the chunks, associations between cognitive units and the priming [1].
It is given as the sum of the so-called base-level activation B(ci) and the spread-
ing activation S(ci), which again is a sum of degrees of association between
chunks S(ci, cj) weighted by a weighting factor W(cj):

A(ci) = B(ci)︸ ︷︷ ︸
base-level activation

+
∑

j
W(cj) · S(ci, cj)︸ ︷︷ ︸

spreading activation S(ci)

. (1)

The base-level activation of a chunk B(ci) reflects the entrenchment of ci in
the reasoner’s memory and depends on the recency and frequency of its use.
Therewith, it models the long-term memory of the reasoner. The spreading acti-
vation describes the context-dependency of the activation of chunks, hence, the
short-term process. The core idea behind the spreading activation theory [1] is
that an initial priming caused by sensory stimuli triggers certain cognitive units,
the basic building blocks of chunks, which again trigger related cognitive units
and so on until the disposition for activation is too low to trigger further cogni-
tive units. Usually, the cognitive units are arranged as vertices in an undirected
graph, the so-called spreading activation network, and the triggering of cogni-
tive units is propagated through this network. The spreading activation S(ci)
can then be derived from the triggering values of the cognitive units of which ci
makes use. The interrelation of cognitive units and of chunks is specified in more
detail in the degree of association and the weighting factor. The degree of asso-
ciation S(ci, cj) reflects how strongly related ci and cj are. Chunks which deal
with the same issue (i.e., share cognitive units) have a high degree of association
while chunks which refer to different topics are only loosely or not related and
therefore have a low degree of association. While the degree of association is in-
dependent of the priming, the weighting factor reflects the context-dependency
of the spreading activation.

3 Activation-Based Conditional Inference

Activation-based conditional inference (ActInf) [12] proposes a cognitively in-
spired model of inductive conditional reasoning by interpreting the concepts of
ACT-R in terms of logic, conditionals, and inference. In ActInf, the declara-
tive memory is formalized as a conditional belief base ∆ so that chunks are
replaced by conditionals δ ∈ ∆. Conditionals are expressions of the form (B|A),
here defined over a propositional language L(Σ) with A,B ∈ L(Σ), stating that
“B usually follows from A.” Based on an adapted version of the activation func-
tion (1) a subset of ∆ is computed from which inferences are drawn with respect
to any inductive inference operator [4] which replaces the production system of
ACT-R. If q is a query conditional, which serves as the initial priming in ActInf,
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the activation function for conditionals is given by

A∆
q (δ) = B∆(δ)

︸ ︷︷ ︸
base-level activation

+
∑
δ′∈∆

W∆
q (δ′) · S(δ, δ′)︸ ︷︷ ︸

spreading activation S∆
q (δ)

, δ ∈ ∆.

In order to answer q, for every conditional in ∆ its activation value A∆
q (δ)

is calculated. If this value is above a certain threshold, then the conditional is
selected for drawing the inference. The iterative retrieval of chunks in ACT-R
can be mimicked in this framework by iteratively lowering the threshold. Note
that one has to be mindful of the non-monotonicity of conditional reasoning
and the three-valued logic of conditionals in this context. A way of guaranteeing
that during the iteration process formerly drawn inferences are not rejected in
the further course is by choosing a semi-monotonous inference operator (like
System P inference [6], cf. also the connection to focused inference [13]) and
considering a query to fail if neither the query conditional q = (B|A) nor its
counterpart (¬B|A) can be inferred.

In the remainder, we recall the ideas from [12] on how the components of
A∆

q (δ) can be configured in order to obtain an executable activation function
which can be seen as a blueprint for the development of further ActInf systems.

Base-Level Activation. The base-level activation B∆(δ) reflects the entrench-
ment of δ in the reasoner’s memory. Since epistemic entrenchment and ranking
semantics [11] are dual ratings, the normality of a conditional is a good esti-
mator. The normality of a conditional δ can be expressed by its Z-rank Z∆(δ)
specified by System Z [9] so that we define

B∆(δ) =
1

1 + Z∆(δ)
, δ ∈ ∆.

While the most normal conditionals have a base-level activation of B∆(δ) = 1,
this value decreases with increasing specificity of δ.

Weighting Factor. The weighting factor W∆
q (δ) indicates how much the initial

priming q triggers the conditional δ. We formalize the influence of the priming
according to the spreading activation theory by a labeling of a spreading activa-
tion network N (∆) = (V, E), i.e., an undirected graph between cognitive units.
In our context, the cognitive units are the atoms a ∈ Σ and the outcome of the
labeling of N (∆) are triggering values τ∆q (a) ∈ [0, 1] which indicate how much a
is triggered by q. Edges in N (∆) represent associations between the atoms in Σ
along which the triggering of the atoms spreads. Two atoms are considered to
be associated if they occur commonly in some conditionals in ∆, so that

V = Σ and E = {{a, b} | ∃δ ∈ ∆ : {a, b} ⊆ Σ(δ)}.

The actual spreading of activation is modeled by iteratively labeling the vertices
(atoms) in N (∆) with their triggering value τ∆q (a). The labeling algorithm is
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Input: Spreading activation network N (∆) = (V, E), query q = (B|A)
Output: Labeling of N (∆), i.e., triggering values τ∆

q (a) = label(a) for a ∈ Σ

1 for a ∈ V with a ∈ Σ(q) : label(a) = 1

2 initialize
3 L = {a ∈ V | a is labeled},
4 V ′ = {a ∈ V | ∃{a, b} ∈ E : a ∈ V \ L ∧ b ∈ L}
5 while V ′ ̸= ∅ :

6 for a ∈ V ′ : label(a) =

∑
b∈L: {a,b}∈E label(b)

1 +
∑

b∈L label(b)

7 update L, V ′

8 for a ∈ V \ L : label(a) = 0

9 return label(a) for a ∈ V

Fig. 1. Labeling algorithm.

shown in Figure 1 and an example of a spreading activation network together
with its labels is shown in Figure 2.

Eventually, we follow the idea that a conditional δ cannot be triggered more
than its atoms and define the weighting factor by

W∆
q (δ) = min{τ∆q (a) | a ∈ Σ(δ)}, δ ∈ ∆.

Degree of Association. The degree of association S(δ, δ′) is a measure of
connectedness between the conditionals in ∆ and is defined by

S(δ, δ′) =
|Σ(δ) ∩Σ(δ′)|
|Σ(δ) ∪Σ(δ′)|

, δ, δ′ ∈ ∆.

It is the number of shared atoms relative to all atoms in δ or δ′. Note that not only
the quantities S(δ, δ′) for δ′ ∈ ∆ themselves determine the spreading activation
of a conditional δ but also how many conditionals δ is associated with. The more
a conditional is cross-linked within ∆, the more likely it is that this conditional
has a high spreading activation. With increasing syntactically linkage to the
query q the spreading activation of a conditional increases, while conditionals
which are not linked to the query at all have a spreading activation of zero. In
this sense, ActInf refines syntax splitting [8, 4] by a gradual notion. The base-
level activation “softens” the syntactically motivated rejection of conditionals if
the entrenchment of these conditionals is high enough.

4 Forgetting and Remembering in ActInf

Eventually, we present how cognitive concepts like forgetting and remembering
can be realized in ActInf. In ACT-R the base-level activation of a chunk is not
constant but decreases over time and increases when the chunk is retrieved which
we have not considered so far in ActInf. In order to capture this dynamic view on
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a τ∆
q1(a) τ∆

q2(a)

a 1 (0) 1/4 (1)
b 2/3 (1) 1/4 (1)
c 4/15 (2) 1 (0)
d 2/15 (2) 1/21 (2)
f 2/3 (1) 1 (0)

h 1/5 (2) 1/4 (1)
i 1/3 (1) 1/21 (2)
k 0 (∞) 0 (∞)
l 1/15 (2) 4/151 (3)
m 0 (∞) 0 (∞)

p 1 (0) 1/4 (1)
r 1/15 (2) 1/21 (2)
s 2/15 (2) 1 (0)
w 1/3 (1) 1/4 (1)

Fig. 2. Example of a spreading activation network N (∆) for ∆ = {(f |aw), (¬f |a ∧
¬w), (b ⇒ a|⊤), (w|b), (d|b), (p ⇒ b|⊤), (¬f |p), (c ⇒ b|⊤), (¬f |c), (f |c ∧ s), (¬s|c), (i ⇒
a|⊤), (r ⇒ i|⊤), (l ⇒ i|⊤), (l ∨ r|i), (¬d|r), (d|l), (h ⇒ r|⊤), (f ∧ ¬w|h), (k ⇒ m|⊤)}
(cf. [12]) and its labels wrt. the queries q1 = (p ⇒ a|⊤) and q2 = (f |c ∧ ¬s). The
numbers in the parentheses next to the labels are the iteration steps in which the
atoms are labeled. 0 stands for the priming and ∞ for unreachable atoms.

the base-level activation, we decrease the base-level activation of a conditional
when the conditional is not selected for answering a query (s(δ) = 0) and increase
it otherwise (s(δ) = 1). Let θ ≥ 0. Then, the so-called forgetting factor of δ is

ϕθ,s(δ) =

{
1 + θ iff s(δ) = 1

1− θ otherwise
, δ ∈ ∆.

After performing an inference task, we update the base-level activation with this
forgetting factor and obtain for the updated base-level activation

B∆
θ,s(δ) = B∆(δ) · ϕθ,s(δ).

The higher the parameter θ, the greater the impact of the forgetting factor ϕθ,s(δ)
on the base-level activation is. When applying this kind of update to a series of
inference requests, the usage history of the conditionals is implemented into the
base-level activation. Now, we can understand forgetting as the process of low-
ering the base-level activation of a conditional δ so far over time (because it has
not been selected for inference requests in the meantime) that δ is not considered
for answering a query q anymore although it would have been considered if q
was asked initially. Remembering in ActInf can be understood as follows: It can
happen that a conditional is not selected for answering a query q but over time
this conditional is considered in other reasoning tasks such that its base-level
activation increases to such an extend that when it comes to the query q again
this conditional is selected as of now.
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