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Abstract
Argument-incomplete argumentation frameworks provide an intuitive way of representing uncertainty
in argumentative contexts. It is however possible that, taking structured argumentation as a reference
point, the general assumptions of these models present the same risks of hasty generalization attributed
to some abstract argumentation models, as they do not have a structured counterpart. Here, we focus on a
specific instantiation of argument-incomplete argumentation frameworks: rooting the uncertainty about
arguments in the uncertainty about the application of ASPIC+-inference rules. We show (Proposition 1)
that the abovementioned risk is concrete. Therefore a more fine-grained representation of uncertainty at
the abstract level is needed, which we provide with implicative argument-incomplete argumentation
frameworks and prove to work (Theorem 1).
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1. Introduction and motivation

Encoding uncertainty about arguments and attacks is key for applying formal argumentation in
several contexts, including strategic ones such as modelling opponents in a debate [1]. Recent
literature on abstract argumentation witnesses models of different inspiration [2, 3, 4, 5, 6]. Yet,
one question is whether such abstract models are adequate to capture proper argumentative
uncertainty. This echoes more general concerns about abstract argumentation models, insofar
as they open to assumptions and generalisations that are unjustified or meaningless at the
structured level (as shown in [7, 8, 9]).

To address this question in more precise terms, we consider argument-incomplete abstract ar-
gumentation frameworks (arg-IAAFs) [10, 11, 12] as our abstract model of qualitative uncertainty.
Further, we take ASPIC+ [7], with its notion of structured argumentation frameworks (SAFs),
as our underlying formalism for structured argumentation. Following the suggestions by [12],
uncertainty can be generated either by uncertain inference rules or by incomplete preference
profiles. Here we focus on the first option: the uncertainty of an argument is explained by the
uncertainty of whether one or more inference rules of this argument must be applied.

More procedurally, we define rule-incomplete structured argumentation frameworks (rul-
ISAFs) as incomplete extensions of SAFs, and as natural counterparts of arg-IAAFs in abstract
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argumentation. As a first negative result (Proposition 1), we show that there are rul-ISAFs that
cannot be represented abstractly as IAFs. However, correspondence is retrieved (Theorem 1) if
we instead consider a refinement of arg-IAAFs, that we name implicative argument-incomplete
abstract argumentation framework (imp-arg-IAAF).

Section 2 provides the necessary formal background on abstract and structured argumentation,
as well as the newly defined notions. In Section 3 we prove our main results. Section 4 sketches
our current research directions.

2. Background

A (Dung) abstract argumentation framework (AAF) is a directed graph ⟨Arg,Def⟩ where
Arg is a set of arguments and Def ⊆ Arg × Arg is a defeat relation among them.

An argument-incomplete abstract argumentation framework (arg-IAAF) is a tuple
⟨Arg𝐹,Arg?,Def⟩ where Arg𝐹 and Arg? are two pairwise disjoint sets of arguments and Def ⊆
(Arg𝐹 ∪ Arg?) × (Arg𝐹 ∪ Arg?).
A completion of ⟨Arg𝐹,Arg?,Def⟩ is any AAF ⟨Arg∗,Def∗⟩ s.t.:

• Arg𝐹 ⊆ Arg∗ ⊆ Arg𝐹 ∪ Arg?.
• Def∗ = Def↾Arg∗ .

As announced arg-IAAFs will fail to be expressive enough for capturing uncertain infer-
ence rules. That’s why we need a more refined formalism. An implicative argument-
incomplete abstract argumentation framework (imp-arg-IAAF) is ⟨Arg𝐹,Arg?,Def, Δ⟩
where ⟨Arg𝐹,Arg?,Def⟩ is an argument-incomplete abstract argumentation framework and
Δ ⊆ Arg? × Arg? is a set of implicative dependencies. Informally, (𝐴, 𝐵) ∈ Δ means that 𝐵
appears in a completion whenever 𝐴 does. Formally, a completion of ⟨Arg𝐹,Arg?,Def, Δ⟩ is
any AAF ⟨Arg∗,Def∗⟩ s.t.:

• ⟨Arg∗,Def∗⟩ is a completion of ⟨Arg𝐹,Arg?,Def⟩.
• For all (𝑋 , 𝑌 ) ∈ Δ if 𝑋 ∈ Arg∗, then 𝑌 ∈ Arg∗.

Note that imp-arg-IAAFs can be seen as a restricted class of constrained incomplete AFs
[13, 14] or as a restricted class IAFs with correlations [15].

Finally, we introduce the ASPIC+ notions [16] that are relevant to our study. A structured
argumentation framework (SAF) is a tuple 𝕊𝔸𝔽 = ⟨L, ⋅,R, 𝔫,K,Arg,Att, ⪯⟩ where each
component is defined as follows:

• L is a formal language.
• ⋅ ∶ L → 2L is a contrary function. We say that:

– 𝜑 is contrary of 𝜓 iff 𝜓 ∈ 𝜑 but 𝜑 ∉ 𝜓.
– 𝜑 is contradictory of 𝜓 (noted 𝜑 = −𝜓) iff 𝜓 ∈ 𝜑 and 𝜑 ∈ 𝜓.
– each 𝜑 ∈ L has at least one contradictory.

• R = R𝑠 ∪ R𝑑 with R𝑠 ∩ R𝑑 = ∅ is a set of inference rules (sequences of elements of L). R𝑠
represents strict rules while R𝑑 represents defeasible rules.



• 𝔫 ∶ R𝑑 → L is a partial naming function for defeasible rules.
• K ⊆ L is a knowledge base, assumed to be split into two disjoint subsets K𝑛 (axioms)
and K𝑝 (ordinary premises).

• Arg is the set of arguments of 𝕊𝔸𝔽, which is defined inductively together with some
auxiliary functions: Sub(⋅) (returns the subarguments of a an argument), Prem(⋅) (returns
the premisses of a an argument), Conc(⋅) (returns the conclusion of a an argument),
and TopRule(⋅) (returns the last rule employed in the construction of a an argument).
We have that 𝐴 ∈ Arg iff:

– 𝐴 = [𝜑] if 𝜑 ∈ K, with Prem(𝐴) = Conc(𝐴) = {𝜑}, Sub(𝐴) = {𝜑} and TopRule(𝐴) is
left undefined.

– 𝐴 = [𝐴1, ..., 𝐴𝑛 ↠ 𝜑] if 𝐴𝑖 is an argument for 1 ≤ 𝑖 ≤ 𝑛 and
(Conc(𝐴1), ...,Conc(𝐴𝑛), 𝜑) ∈ R𝑠, with Prem(𝐴) = ⋃1≤𝑖≤𝑛 Prem(𝐴𝑖), Conc(𝐴) = 𝜑,
Sub(𝐴) = {𝐴} ∪ ⋃1≤𝑖≤𝑛 Sub(𝐴𝑖), TopRule(𝐴) = (Conc(𝐴1), ...,Conc(𝐴𝑛), 𝜑).

– 𝐴 = [𝐴1, ..., 𝐴𝑛 ⇒ 𝜑] if 𝐴𝑖 is an argument for 1 ≤ 𝑖 ≤ 𝑛 and
(Conc(𝐴1), ...,Conc(𝐴𝑛), 𝜑) ∈ R𝑑, with Prem(𝐴) = ⋃1≤𝑖≤𝑛 Prem(𝐴𝑖), Conc(𝐴) = 𝜑,
Sub(𝐴) = {𝐴} ∪ ⋃1≤𝑖≤𝑛 Sub(𝐴𝑖), TopRule(𝐴) = (Conc(𝐴1), ...,Conc(𝐴𝑛), 𝜑).

• Att ⊆ Arg × Arg is the attack relation of 𝕊𝔸𝔽. ASPIC+ allows for three kinds of attacks.
We say that 𝐴 attacks 𝐵 (i.e., (𝐴, 𝐵) ∈ Att) iff 𝐴 undermines, rebuts or undercuts 𝐵, where:

– 𝐴 undermines 𝐵 (on 𝐵′) iff Conc(𝐴) ∈ 𝜑 for some 𝐵′ = 𝜑 ∈ Prem(𝐵) and 𝜑 ∈ K𝑝.
– 𝐴 rebuts 𝐵 (on 𝐵′) iff Conc(𝐴) ∈ 𝜑 for some 𝐵′ = Sub(𝐵) of the form 𝐵′

1, ...., 𝐵′
𝑛 ⇒ 𝜑.

– 𝐴 undercuts 𝐵 (on 𝐵′) iff Conc(𝐴) ∈ 𝔫(TopRule(𝐵′)) for some 𝐵′ = Sub(𝐵) with
TopRule(𝐵′) ∈ R𝑑.

• ⪯⊆ Arg × Arg is a preference relation among arguments, with ≺=⪯ ⧵ ⪯−1 its strict
counter-part.

Given 𝕊𝔸𝔽 = ⟨L, ⋅,R, 𝔫,K,Arg,Att, ⪯⟩, we use L(𝕊𝔸𝔽) to denote L and apply the same con-
vention for the rest of the components. Let 𝐴, 𝐵 ∈ Arg(𝕊𝔸𝔽), we say that 𝐴 defeats 𝐵 iff: (i)
𝐴 undercuts 𝐵, or (ii) 𝐴 undermines/rebuts 𝐵 (on 𝐵′) and 𝐴 ⊀ 𝐵′. The set of all defeats for a
given 𝕊𝔸𝔽 is denoted Def(𝕊𝔸𝔽). Finally, given 𝕊𝔸𝔽, the Dung’s argumentation framework
associated to 𝕊𝔸𝔽 is just 𝔻𝔸𝔽(𝕊𝔸𝔽) = (Arg(𝕊𝔸𝔽),Def(𝕊𝔸𝔽)).

3. Structured frameworks with uncertain inference rules

As mentioned, here we consider the set of rules of a given structured argumentation framework
as a source of uncertainty for the presence of arguments. In the same spirit of IAFs, one can
define a rule-incomplete structured argumentation framework as a tuple rul-𝕀𝕊𝔸𝔽 =
⟨L, ⋅,R, 𝔫,K,Arg,Att, ⪯⟩, where every component is just as in a SAF except from the set of rules
R, which is split into four pairwise disjoint subsets R = R𝐹

𝑠 ∪R?
𝑠 ∪R𝐹

𝑑 ∪R
?
𝑑, representing respectively

certain strict rules, uncertain strict rules, certain defeasible rules and uncertain defeasible rules.
Then, a rule-completion of rul-𝕀𝕊𝔸𝔽 is any 𝕊𝔸𝔽∗ = ⟨L, ⋅,R∗, 𝔫,K,Arg∗,Att∗, ⪯∗⟩ where:

• R
∗
= R∗

𝑠 ∪ R∗
𝑑 is s.t.:



– R𝐹
𝑠 ⊆ R∗

𝑠 ⊆ (R𝐹
𝑠 ∪ R?

𝑠 );
– R𝐹

𝑑 ⊆ R∗
𝑑 ⊆ (R𝐹

𝑑 ∪ R
?
𝑑).

• Arg∗ and Att∗ are the set of arguments and attacks generated by R∗.
• ⪯∗=⪯↾Arg∗ .

We denote by rul-completions(𝕀𝕊𝔸𝔽) the set of rule-completions of rul-𝕀𝕊𝔸𝔽.
Finally, let rul-𝕀𝕊𝔸𝔽 be given, its set of completions is simply defined as:

completions(rul-𝕀𝕊𝔸𝔽) ={𝔻𝔸𝔽(𝕊𝔸𝔽∗) ∣ 𝕊𝔸𝔽∗ ∈ rul-completions(rul-𝕀𝕊𝔸𝔽)}.

Our research question can be now put in more precise terms: is the set of completions of a
rul-ISAF always equal to the set of completions of some (arg-)IAAF? The answer is negative.
Formally,

Proposition 1. Given rul-𝕀𝕊𝔸𝔽, it is not necessarily the case that there is arg-𝕀𝔸𝔸𝔽 s.t.:
completions(rul-𝕀𝕊𝔸𝔽) = completions(arg-𝕀𝔸𝔸𝔽).

Proof. A simple counterexample is provided by considering any rul-𝕀𝕊𝔸𝔽 where L is the lan-
guage of propositional logic containing atoms 𝑝, 𝑞 and 𝑟, ⋅ is classical negation, with R𝑠 = R?

𝑠 = ∅,
R𝑑 = {(𝑞, 𝑟)}, and R?

𝑑 = {(𝑝, 𝑞)} , K𝑠 = ∅, K𝑝 = {𝑝}, and ⪯= ∅. Then, completions(rul-𝕀𝕊𝔸𝔽) has
two members, namely ⟨{[𝑝]}, ∅⟩ and ⟨{[𝑝], [[𝑝] ⇒ 𝑞], [[[𝑝] ⇒ 𝑞] ⇒ 𝑟]}, ∅⟩. Clearly, for basic
cardinality reasons, no arg-IAAF has an isomorphic set of completions, since a completion with
one argument and a completion with three arguments would force the presence of another
completion with two arguments.

As mentioned, one way to interpret this result is that nothing guarantees that the completion
of an (arg-)IAAF is subargument closed, e.g., that 𝑝 ⇒ 𝑞 ⇒ 𝑟 forces the presence of 𝑝 ⇒ 𝑞, as in
Proposition 1.

Theorem 1. Let rul-𝕀𝕊𝔸𝔽 be a rul-ISAF, there exists an imp-arg-𝕀𝔸𝔸𝔽 s.t.

completions(rul-𝕀𝕊𝔸𝔽) = completions(imp-arg-𝕀𝔸𝔸𝔽).

Sketch of the proof. Let rul-𝕀𝕊𝔸𝔽 = ⟨L, ⋅,R, 𝔫,K,Arg,Att, ⪯⟩ be a rul-ISAF, we will use two of
its completions in the proof:

• 𝕊𝔸𝔽𝐹 is the rule-completion whose set of rules is R𝐹 = R𝐹
𝑠 ∪ R𝐹

𝑑 (i.e., the set of certain
rules).

• 𝕊𝔸𝔽𝑚𝑎𝑥 is the rule-completion whose set of rules is R𝑚𝑎𝑥 = R𝐹
𝑠 ∪ R𝐹

𝑑 ∪ R
?
𝑠 ∪ R?

𝑑 (i.e., the
completion generated by using all certain and uncertain rules).

Now, we are going to build the target imp-arg-IAAF ⟨Arg𝐹,Arg?,Def, Δ⟩:

• Arg𝐹 = Arg(𝕊𝔸𝔽𝐹).
• Arg? = Arg(𝕊𝔸𝔽𝑚𝑎𝑥) ⧵ Arg(𝕊𝔸𝔽𝐹).
• Def = Def(𝕊𝔸𝔽𝑚𝑎𝑥).
• Δ = {(𝑋 , 𝑌 ) ∈ Arg? × Arg? ∣ 𝑌 ∈ Sub(𝑋)}.



We show that both directions of the equality completions(rul-𝕀𝕊𝔸𝔽) =
completions(⟨Arg𝐹,Arg?,Def, Δ⟩) hold:
[⊆] Suppose (Arg∗,Def∗) ∈ completions(rul-𝕀𝕊𝔸𝔽), which amounts by definition of
completions to

(H1) (Arg∗,Def∗) = 𝔻𝔸𝔽(𝕊𝔸𝔽∗) for some 𝕊𝔸𝔽∗ ∈ rul-completions(𝕀𝕊𝔸𝔽)

Hence, we just need to check that (Arg∗,Def∗) satisfies the conditions for being a completion
of ⟨Arg𝐹,Arg?,Def, Δ⟩, namely: (a) Arg𝐹 ⊆ Arg∗ ⊆ Arg𝐹 ∪ Arg?; (b) Def∗ = Def↾Arg∗ ; and (c) for
all (𝑋 , 𝑌 ) ∈ Δ if 𝑋 ∈ Arg∗, then 𝑌 ∈ Arg∗.

To do so, we need to establish the following claims, whose proof we omit:

Lemma 1. Let 𝕊𝔸𝔽 and 𝕊𝔸𝔽′ only differ in their set of inference rules. Then:

1. R(𝕊𝔸𝔽) ⊆ R(𝕊𝔸𝔽′) implies Arg(𝕊𝔸𝔽) ⊆ Arg(𝕊𝔸𝔽′).
2. R(𝕊𝔸𝔽) ⊆ R(𝕊𝔸𝔽′) implies Def(𝕊𝔸𝔽) = Def(𝕊𝔸𝔽′)↾Arg(𝕊𝔸𝔽).
3. Arg(𝕊𝔸𝔽) is closed under subarguments (i.e., 𝑋 ∈ Arg(𝕊𝔸𝔽) implies Sub(𝑋) ⊆ Arg(𝕊𝔸𝔽)).

Based on how we defined our target imp-arg-IAAF and H1, condition 1 of Lemma 1 entails
(a), since R(𝕊𝔸𝔽𝐹) ⊆ R(𝕊𝔸𝔽∗) ⊆ R(𝕊𝔸𝔽max). For the same reason, (b) follows from condition 2
by R(𝕊𝔸𝔽∗) ⊆ R(𝕊𝔸𝔽max). Finally, condition 3 entails (c) by how we set Δ.

[⊇] Suppose (Arg∗,Def∗) ∈ completions(⟨Arg𝐹,Arg?,Def, Δ⟩). Then conditions (a)-(c) above
are satisfied. We need to show that (Arg∗,Def∗) ∈ completions(rul-𝕀𝕊𝔸𝔽), which means, by
definition, that for some 𝕊𝔸𝔽 ∈ rul-completions(rul-𝕀𝕊𝔸𝔽)we have𝔻𝔸𝔽(𝕊𝔸𝔽) = (Arg∗,Def∗).
Now, let us consider 𝕊𝔸𝔽′ = ⟨L, ⋅,R′, 𝔫,K,Arg′,Att′, ⪯′⟩ where R′ = {TopRule(𝑋) ∣ 𝑋 ∈ Arg∗},
Arg′ = Arg∗, Att′ = Att↾Arg′ and ⪯′=⪯↾Arg′ (it is easy to check that 𝕊𝔸𝔽′ is actually a SAF).
Using conditions (a)-(c) above, one can show that either 𝕊𝔸𝔽′ is the rule-completion of 𝕀𝕊𝔸𝔽
we are looking for, or that there is one rule-completion 𝕊𝔸𝔽∗ with R(𝕊𝔸𝔽′) ⊆ R(𝕊𝔸𝔽∗) s.t.
𝔻𝔸𝔽(𝕊𝔸𝔽∗) = 𝔻𝔸𝔽(𝕊𝔸𝔽′).1

4. Future work

A natural completion of the present work is to investigate whether the existential claim of
Theorem 1 holds in the other direction as well, i.e. for every imp-arg-IAAF there is a rul-ISAF
with an isomorphic set of completions. Together with Theorem 1, this would amount to a
characterization result for the class of rul-ISAFs. We conjecture that this is in fact the case, but
the proof is not as direct as that of Theorem 1 and we leave it for future work.2

Another task is to investigate the second root of uncertainty mentioned by [12, Section 8.1.]:
incomplete defeats based on incomplete preference profiles. Here again, we think a negative
result, analogous to Proposition 1, obtains. As for the analogous to Theorem 1, we think that a
restricted version of attack-IAAFs ([17]) with correlations could work at the abstract level.
1The second case emerges from the fact that there could be (potentially) useless rules within R, these are, rules that
do not take part in the construction of any argument within a rule-completion.

2Among other subtleties, note that for Theorem 1 we played with the fact that the domain of an imp-arg-IAAF
Arg𝐹 ∪Arg? could be any set (even a set of ASPIC+ arguments). However, this does not apply for ISAFs (its arguments
are always ASPIC+ arguments), so for the other direction of the theorem one needs to define a (straightforward)
isomorphism from rul-ISAF completions to imp-arg-IAAF completions.
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